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Graph Spectrum

Throughout this presentation,
e G = (V(G),E(G)) is a finite, undirected, and simple graph of order
|V(G)| = n and size | E(G)| = m.
e A = A(G) is the adjacency matrix of the graph.

@ The eigenvalues of A are given in decreasing order by
Amax(G) = A1(G) > X2(G) > ... > A\ (G) = Amin(G). (1.1)

@ The spectrum of G is a multiset that consists of all the eigenvalues of
A, including their multiplicities.
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Orthogonal Representation of Graphs

Definition 1.1

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in R?

i€ V(G) — u; € R?
such that
ulu; =0, V{i,j}¢E(G).

An orthonormal representation of G: ||u;|| = 1 for all i € V(G).

L
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Orthogonal Representation of Graphs

Definition 1.1

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in R?

i € V(G) — u; € R?
such that
ulu; =0, V{i,j}¢E(G).

An orthonormal representation of G: ||u;|| = 1 for all i € V(G).

L

In an orthogonal representation of a graph G:
@ non-adjacent vertices: mapped to orthogonal vectors;

@ adjacent vertices: not necessarily mapped to non-orthogonal vectors.
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Lovasz J-function

Let G be a finite, undirected and simple graph.
The Lovasz Y-function of G is defined as
1
9(G) £ min max ——, (1.2)
u,c cV(G) (cTui)
where the minimum is taken over
o all orthonormal representations {u; : i € V(G)} of G, and

@ all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.
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Lovasz J-function

Let G be a finite, undirected and simple graph.
The Lovasz J-function of G is defined as

9(G) £ min max ;2, (1.2)
u,c cV(G) (cTui)

where the minimum is taken over
o all orthonormal representations {u; : i € V(G)} of G, and

@ all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.

u| < llell lu = 1 = 9(G) > 1,

with equality if and only if G is a complete graph.
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An Orthonormal Representation of a Pentagon

w ¢

Figure 1: A 5-cycle graph and its orthonormal representation (also known as
Lovész umbrella). Calculation shows that 9(Cs) = /5 (Lovasz, 1979).
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Lovész ¥-function (Cont.)

@ A is the n x n adjacency matrix of G (n = |V(G)|);
@ J, is the all-ones n x n matrix;
@ S is the set of all n x n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing 9(G):

maximize Trace(BJ,,)
subject to

B e S}, Trace(B) =1,
Ai,j =1 = Bi,j =0, 1,7€ [n]

Computational complexity: 3 algorithm (based on the ellipsoid method)
that numerically computes 9(G), for every graph G, with precision of r
decimal digits, and polynomial-time in n and r.
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Lovész ¥-function (Cont.)

Let «(G), w(G), and x(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

ich th ; G
@ Sandwich theorem a(G) < 9(G) < x(G),

w(G) < 9(G) < X(G).

(1.3)
(1.4)

v
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Lovész ¥-function (Cont.)

Let «(G), w(G), and x(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

@ Sandwich theorem:

@ Computational complexity:
» a(G), w(G), and x(G) are NP-hard problems.
» However, the numerical computation of ¥(G) is in general
feasible by convex optimization (SDP problem).

(1.3)
(1.4)
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Lovész ¥-function (Cont.)

Let «(G), w(G), and x(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

@ Sandwich theorem: o(G) < 9(G) < x(G), (1.3)

X
w(G) < 9(G) < x(G). (1.4)

@ Computational complexity:
» a(G), w(G), and x(G) are NP-hard problems.
» However, the numerical computation of ¥(G) is in general
feasible by convex optimization (SDP problem).

@ Hoffman-Lovasz inequality: Let G be d-regular of order n. Then,

n A (G)
H(G) < ESWE)

with equality if G is edge-transitive.

(1.5)
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Strongly Regular Graphs

Let G be a d-regular graph of order n. It is a strongly regular graph (SRG)
if there exist nonnegative integers A and p such that

@ Every pair of adjacent vertices have exactly A\ common neighbors;

@ Every pair of distinct and non-adjacent vertices have exactly p
common neighbors.

Such a strongly regular graph is denoted by srg(n,d, \, u).
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Theorem 1.2 (Bounds on Lovész function of Regular Graphs, |.S., '23)

Let G be a d-regular graph of order n, which is a non-complete and
non-empty graph. Then, the following bounds hold for the Lovasz
¥-function of G and its complement G:

1)

n—d+ X2(G) nA\,(G)

— 2 <Y(G) < —— . 1.
1+ X(G) — (6) = d— M (G) (1.6)

o Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

@ Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Cont. of Theorem 1.2

2)

(1.7)

@ Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

e Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Cont. of Theorem 1.2

2)

(1.7)

@ Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

e Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.

A Common Sufficient Condition

All inequalities hold with equality if G is strongly regular. (Recall that the
graph G is strongly regular if and only if G is so).
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Lovész Function of Strongly Regular Graphs (1.S., '23)

Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,
n(t+p—2A)
NG) = —F———— 1.8
(©) 2d +t+pu— N (1.8)
— 2d
HG) =14 — 1.9
@ =1+ (19)
where
t2 /(-2 +4(d—p). (1.10)
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Lovédsz Function of Strongly Regular Graphs (1.S., '23)

Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,
n(t+p—2A)
NG) = —F———— 1.8
(©) 2d +t+pu— N (1.8)
— 2d
HG) =14 — 1.9
@ =1+ (19)
where
t2 /lu— AP+ ald—p). (1.10)
New Relation for Strongly Regular Graphs
9(G)V(G) = n, (1.11)
holding not only for all vertex-transitive graphs (Lovasz '79), but also for
all strongly regular graphs (that are not necessarily vertex-transitive).
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We next provide an original proof of the following celebrated theorem by
Erdds, Rényi and Sés (1966), based on our expression for the Lovasz
U-function of strongly regular graphs (and their complements, which are
also strongly regular graphs).

Theorem 1.3 (Friendship Theorem)

Let G be a finite graph in which any two distinct vertices have a single
common neighbor. Then, G has a vertex that is adjacent to every other
vertex.
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We next provide an original proof of the following celebrated theorem by
Erdds, Rényi and Sés (1966), based on our expression for the Lovasz
U-function of strongly regular graphs (and their complements, which are
also strongly regular graphs).

Theorem 1.3 (Friendship Theorem)

Let G be a finite graph in which any two distinct vertices have a single
common neighbor. Then, G has a vertex that is adjacent to every other
vertex.

A Human Interpretation of Theorem 1.3

@ There is a party with n people, where every two people have precisely
one common friend in that party.

@ Theorem 1.3 asserts that one of these people is everybody’s friend.

@ Indeed, construct a graph whose vertices represent the n people, and
every two vertices are adjacent if and only if they represent two
friends. The claim then follows from Theorem 1.3.

= = = = =
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Remark 1 (On the Friendship Theorem - Theorem 1.3)

@ The windmill graph (see Figure 2) has the desired property, and it
turns out to be the only one graph with that property.

@ The friendship theorem does not hold for infinite graphs.

Figure 2. Windmill graph.
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Alternative Proof of Theorem 1.3 (I.S., '25)

Suppose the assertion is false, and G is a counterexample — a finite graph
in which any two distinct vertices have a single common neighbor, yet no
vertex in G is adjacent to all other vertices. A contradiction is obtained by
the following proof outline:

@ |t is shown that the graph is regular.
@ It is then shown that the graph is strongly regular srg(n, k,1,1).

o If k=0o0r k=2, then G = K; or G = K3, respectively, which satisfy
the assertion of the theorem. Hence, next assume that k > 3.

By the theorem hypothesis, it follows that w(G) = x(G) = 3.

By the sandwich theorem w(G) < 9(G) < x(G), so ¥(G) = 3.

Based on the expression for the Lovasz ¥-function 9(G) = 1 + \/Iffl

This leads to a contradiction for all £ > 3.
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The sandwich theorem for the Lovész ¥-function applied to strongly
regular graphs gives the following result.
Corollary 1.4 (Bounds on Parameters of SRGs)
Let G be a strongly regular graph with parameters srg(n, d, A, u). Then,
n(t+p—A)
GO<|————= 1.12
a )_{2d+t+u—>\ (1.12)
2d
G) <1 —_— 1.13
w(©) <1+ | . (113)
2d
G)>1 _ 1.14
X2 1+ || (114)
— n(t+p—2A)
G)>|———— 1.15
x( )_[2d+t+u—)\ ’ (1.15)
with .
t2 /(= N2+ 4(d — p). (1.16)
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Examples: Bounds on Parameters of SRGs

Figure 3: The Petersen graph is srg(10,3,0,1) (left), and the Shrikhande graph is
srg(16,6,2,2) (right). Their chromatic numbers are 3 and 4, respectively.
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Schlafli Graph

. ,,Q %

L A K
beeg;z;,,%ta‘n.:,.‘ >
% A

Figure 4: Schlafli graph is srg(27,16, 10, 8) with chromatic number x(G) = 9.
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Examples: Bounds on Parameters of SRGs (Cont.)

@ Let Gy be the Petersen graph. Then, the bounds on the
independence, clique, and chromatic numbers of G are tight:

Oé(Gl) = 4, w(Gl) = 2, X(Gl) = 3 (1.17)

@ The bounds on the chromatic numbers of the Schlafli graph (G2),
Shrikhande graph (Gs) and Hall-Janko graph (Gy) are tight:

X(G2) =9, x(G3) =4, x(Gyq)=10. (1.18)

@ For the Shrikhande graph (Gs),
» the bound on its independence number is also tight: «(Gs) = 4,
» its upper bound on its clique number is, however, not tight (it is
equal to 4, and w(G3) = 3).
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Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
o vertex set: V(GK H) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢',h’) in GX H are adjacent if the
following two conditions hold:

@ g=g or{g,g'} €E@G),
@ h="hnor{hh'} € E(H).
Strong products are commutative and associative.
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Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
@ vertex set: V(GXH) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢, h’') in GIX H are adjacent if the
following two conditions hold:

@ g=gor{g, g} €EG),
@ h="hnor{hh'} € E(H).

Strong products are commutative and associative.

Strong Powers of Graphs

Let

G**4 GX...KG, keN (1.19)

G appears k times

denote the k-fold strong power of a graph G.
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Shannon Capacity of a Graph (1956)

@ The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.
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Shannon Capacity of a Graph (1956)

@ The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

@ A channel is represented by a confusion graph G, where the vertices
of G represent the input symbols and two vertices are adjacent if the
corresponding pair of input symbols can be confused by the channel
decoder). The Shannon capacity of a graph G is given by

O(G) = sup{/ a(GX*)

keN

= lim {/a(GX*). (2.1)

k—o0
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Shannon Capacity of a Graph (1956)

The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

A channel is represented by a confusion graph G, where the vertices
of G represent the input symbols and two vertices are adjacent if the
corresponding pair of input symbols can be confused by the channel
decoder). The Shannon capacity of a graph G is given by

O(G) = sup{/ a(GEk)

keN

= klilglo\k/a(ng). (2.1)

The last equality holds by Fekete's Lemma since the sequence
{log a(GEF)}%°  is super-additive, i.e.,

a(GEF1tk2)y > o (GRFL) o(GRF2), (2.2)

o = = SRS
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On the Computability of the Shannon Capacity of Graphs

@ The Shannon capacity of a graph can be rarely computed exactly. ©

@ However, the Lovész 9-function of a graph is a computable (and
sometimes tight) upper bound on the Shannon capacity. ©

.

Lovasz Bound on the Shannon Capacity of Graphs (1979)

Theorem: For every finite, simple and undirected graph G,

a(G) < 6(G) < 9(G), (23)

so if a(G) = 9¥(G), then O(G) = J(G).

A,
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Shannon Capacities of Some Strongly Regular Graphs

@ The Hall-Janko graph G is srg(100, 36, 14,12), and ©(G) = 10.
@ The Hoffman-Singleton graph G is srg(50,7,0,1), and ©(G) = 15,
@ The Janko-Kharaghani graphs of orders 936 and 1800 are

srg(936, 375, 150, 150) and srg(1800, 1029, 588, 588), respectively.
The capacity of both graphs is 36.

Janko-Kharaghani-Tonchev: G = srg(324,153,72,72),0(G) =

The graphs introduced by Makhnev are G = srg(64, 18, 2 6)
G = srg(64,45,32,30). Capacities: ©(G) = 16, and @(G)

© e

The Schlafli graph G is srg(27,16,10,8), and ©(G) =

The Shrikhande graph is srg(16, 6,2, 2); its capacity is O(G) = 4.
The Sims-Gewirtz graph G is srg(56, 10,0, 2), and ©(G) = 16.
The graph G by Tonchev is srg(220, 84, 38, 28), and ©(G) = 10.

6 ©6 6 €6

The Mathon-Rosa graph G is srg(280, 117,44, 52), and @(G) = 28.

Theoretical results on the Shannon capacity of graphs are in the papers.
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Recent Journal Papers

This talk relies on the following recent journal papers:

@ |. Sason, “Observations on the Lovdsz ¥-function, graph capacity,
eigenvalues, and strong products,” Entropy, vol. 25, no. 1, paper 104,
pp. 1-40, January 2023. https://doi.org/10.3390/e25010104

@ |. Sason, “Observations on graph invariants with the Lovasz
J-function,” AIMS Mathematics, vol. 9, pp. 15385-15468, April 2024.
https://www.aimspress.com/article/doi/10.3934/math.2024747

© |. Sason, “On strongly regular graphs and the friendship theorem,”
submitted, February 2025. https://arxiv.org/abs/2502.13596

|. Sason, Technion, Israel ITA 2025, San Diego 23/23


https://doi.org/10.3390/e25010104
https://www.aimspress.com/article/doi/10.3934/math.2024747
https://arxiv.org/abs/2502.13596

	Graphs and Lovász Function
	Shannon Capacity of Graphs
	Publications

